JavaScript Tutorial 7: Closure

Javascript tutorial (学习笔记) 系列基本上翻译自 “A re-introduction to JavaScript (JS Tutorial)” 加上自己学习过程中的心得体会.  这一篇是第七篇(接Javascript Tutorial (学习笔记) 6):

Inner functions

JavaScript function declarations are allowed inside other functions. We’ve seen this once before, with an earlier makePerson() function. An important detail of nested functions in JavaScript is that they can access variables in their parent function’s scope:

function betterExampleNeeded() {
    var a = 1;
    function oneMoreThanA() {
        return a + 1;
    return oneMoreThanA();

This provides a great deal of utility in writing more maintainable code. If a function relies on one or two other functions that are not useful to any other part of your code, you can nest those utility functions inside the function that will be called from elsewhere. This keeps the number of functions that are in the global scope down, which is always a good thing.

This is also a great counter to the lure of global variables. When writing complex code it is often tempting to use global variables to share values between multiple functions — which leads to code that is hard to maintain. Nested functions can share variables in their parent, so you can use that mechanism to couple functions together when it makes sense without polluting your global namespace (good point!) — ‘local globals’ if you like. This technique should be used with caution, but it’s a useful ability to have.


This leads us to one of the most powerful abstractions that JavaScript has to offer — but also the most potentially confusing. What does this do?

function makeAdder(a) {
    return function(b) {
        return a + b;
x = makeAdder(5);
y = makeAdder(20);

The name of the makeAdder function should give it away: it creates new ‘adder’ functions, which when called with one argument add it to the argument that they were created with.

What’s happening here is pretty much the same as was happening with the inner functions earlier on: a function defined inside another function has access to the outer function’s variables. The only difference here is that the outer function has returned, and hence common sense would seem to dictate that its local variables no longer exist. But they do still exist — otherwise the adder functions would be unable to work. What’s more, there are two different “copies” of makeAdder‘s local variables — one in which a is 5 and one in which a is 20. So the result of those function calls is as follows:

x(6) // returns 11
y(7) // returns 27

Here’s what’s actually happening. Whenever JavaScript executes a function, a ‘scope’ object is created to hold the local variables created within that function. It is initialised with any variables passed in as function parameters. This is similar to the global object that all global variables and functions live in, but with a couple of important differences: firstly, a brand new scope object is created every time a function starts executing, and secondly, unlike the global object (which in browsers is accessible as window) these scope objects cannot be directly accessed from your JavaScript code. There is no mechanism for iterating over the properties of the current scope object for example.

So when makeAdder is called, a scope object is created with one property: a, which is the argument passed to the makeAdder function. makeAdder then returns a newly created function. Normally JavaScript’s garbage collector would clean up the scope object created for makeAdder at this point, but the returned function maintains a reference back to that scope object. As a result, the scope object will not be garbage collected until there are no more references to the function object that makeAdder returned.

Scope objects form a chain called the scope chain, similar to the prototype chain used by JavaScript’s object system.

A closure is the combination of a function and the scope object in which it was created. (可以类比函数指针)

Closures let you save state — as such, they can often be used in place of objects.

Memory leaks

An unfortunate side effect of closures is that they make it trivially easy to leak memory in Internet Explorer. JavaScript is a garbage collected language — objects are allocated memory upon their creation and that memory is reclaimed by the browser when no references to an object remain. Objects provided by the host environment are handled by that environment.

Browser hosts need to manage a large number of objects representing the HTML page being presented — the objects of the DOM. It is up to the browser to manage the allocation and recovery of these.

Internet Explorer uses its own garbage collection scheme for this, separate from the mechanism used by JavaScript. It is the interaction between the two that can cause memory leaks.

A memory leak in IE occurs any time a circular reference (循环引用) is formed between a JavaScript object (比如自定义函数等) and a native object (比如Browser HTML 页面中存在的object, 比如某个id是el的div element). Consider the following:

function leakMemory() {
    var el = document.getElementById('el');
    var o = { 'el': el };
    el.o = o;

The circular reference formed above creates a memory leak; IE will not free the memory used by el and o until the browser is completely restarted.

The above case is likely to go unnoticed; memory leaks only become a real concern in long running applications or applications that leak large amounts of memory due to large data structures or leak patterns within loops.

Leaks are rarely this obvious — often the leaked data structure can have many layers of references, obscuring the circular reference.

Closures make it easy回忆前面闭包的定义, 下面就是一个闭包)to create a memory leak without meaning to. Consider this:

function addHandler() {
    var el = document.getElementById('el');
    el.onclick = function() { = 'red';

The above code sets up the element to turn red when it is clicked. It also creates a memory leak. Why? Because the reference to el is inadvertently caught in the closure created for the anonymous inner function. This creates a circular reference between a JavaScript object (the function) and a native object (el).

There are a number of workarounds for this problem. The simplest is not to use the el variable:

function addHandler(){
    document.getElementById('el').onclick = function(){ = 'red';

Surprisingly, one trick for breaking circular references introduced by a closure is to add another closure:

function addHandler() {
    var clickHandler = function() { = 'red';
    (function() {
        var el = document.getElementById('el');
        el.onclick = clickHandler;
    })(); //封闭了el,所以对于clickHandler来说el其实是不可见的

The inner function is executed straight away, and hides its contents from the closure created with clickHandler(<span style="color: #ff0000;">类比函数指针</span>).

Another good trick for avoiding closures is breaking circular references during the window.onunload event. Many event libraries will do this for you. Note that doing so disables bfcache in Firefox 1.5, so you should not register an unload listener in Firefox, unless you have other reasons to do so.

Written on August 27, 2013